

1 of 2

17EC36

- 6 State and explain Biot-Savart's law. a.
 - (05 Marks) Find 'H' at origin due to an infinite conductor carrying a current of 5A in a_v direction and b located at x = 2 and z = -2. (07 Marks)
 - Given $H = \frac{x + 2y}{z^2}a_y + \frac{2}{z}a_z$ A/m, find J. Find total current passing through z = 4: C. $1 \le x \le 2$; $3 \le y \le 5$. (08 Marks)
- The point charge Q = 18 nc has a velocity of 5×10^6 m/s in the direction 7 a. $a_y = 0.60a_x + 0.75a_y + 0.30a_z$. Calculate the magnitude of force exerted on the charge by:

(i)
$$B = -3a_x + 4a_y + 6a_z mT$$
 (ii) $E = -3a_x + 4a_y + 6a_z KV/m$ (06 Marks)

- Derive the expression for the force on a differential current element moving through a steady b magnetic field. (08 Marks)
- c. The field $B = -2a_x + 3a_y + 4a_z$ mT is present in free space. Find vector force exerted on a straight wire carrying 12 A in a_{AB} direction, given A(1, 1, 1) and (i) B(2, 1, 1) (ii) B(3, 5, 6). (06 Marks)
- Define Magnetization. Given a ferrite material which is operating in a linear mode with 8 a. B = 0.05 T and $\mu_r = 50$. Calculate χ_m , M and H. (06 Marks)
 - b. Derive the boundary conditions for magnetic fields B, H and M for the interface between the different magnetic media. (07 Marks)
 - c. Let $\mu_1 = 4 \ \mu H/m$ in region 1 where z > 0 while $\mu_2 = 7 \ \mu H/m$ in region 2 where z < 0, K = 80 a_x A/m on the surface z = 0. If $B_1 = 2a_x - 3a_y + a_z$ mT in region 1, find B₂. (07 Marks)
- An area of 0.65 m^2 in z = 0 plane is enclosed by a filamentary conductor. Find the induced 9 a. voltage given B = $0.05 \cos 10^3 t \left[\frac{a_y + a_z}{\sqrt{2}} \right] T$. (06 Marks)
 - What is inconsistency of Ampere's law with continuity equation? How it was modified by b. Maxwell? Derive the modified equation. (06 Marks)
 - Given $E = E_m \sin(\omega t \beta z)a_y V/m$ in free space, find D, B, H. Sketch E and H at t = 0. С.

(08 Marks)

Prove that the intrinsic impedance of a perfect dielectric $\eta = \frac{|E|}{|H|} = \sqrt{\frac{\mu}{c}}$ 10 a. (06 Marks)

Derive expressions for attenuation constant ' α ' and phase constant ' β ' for any conducting b. media. (06 Marks)

Calculate attenuation constant, wave velocity and intrinsic impedance in sea water for a c. uniform plane wave at 10 GHz. The constants are $E_r = 80$, $\mu_r = 1$, $\sigma = 4$ Mho s/m. (08 Marks)