

17EC36

Third Semester B.E. Degree Examination, July/August 2021 Engineering Electromagnetics

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. State and explain Coulomb's law in vector form.
(06 Marks)
b. Point charge $Q_{1}=300 \mu$ c located at $(1,-1,3)$ experiences a force $F=8 a_{x}-8 a_{y}-4 a_{z} N$ due to charge Q_{2} at $(3,-3,2)$. Find Q_{2}.
(06 Marks)
c. Find the total charge within the volume indicated:
i) $\rho_{v}=10 z^{2} e^{-0.1 x} \sin \pi y, \quad 1 \leq x \leq 2 ; \quad 0 \leq y \leq 1 ; \quad 3 \leq z \leq 3.6$
ii) $\rho_{v}=4 \mathrm{xyz}^{2}, \quad 0 \leq \rho \leq 2 ; \quad 0 \leq \phi \leq \frac{\pi}{2} ; \quad 0 \leq \mathrm{z} \leq 3$
(08 Marks)

2 a. Derive the expression for electric field intensity ' E ' at any point due to uniform line charge of density $\rho_{\ell} \mathrm{c} / \mathrm{m}$.
(07 Marks)
b. Two uniform surface charge densities of density $\rho_{\mathrm{s}} \mathrm{c} / \mathrm{m}^{2}$ are located at $\mathrm{x}= \pm 4 \mathrm{~m}$. Determine the electric field at all the points.
(06 Marks)
c. Given $D=5 x^{2} a_{x}+10 \mathrm{za}_{z} c / \mathrm{m}^{2}$, find the net outward flux for the surface of a cube of 2 m on an edge centered at origin. The edges of the cube are parallel to coordinate axes. ($\mathbf{0 7}$ Marks)

3 a. State and prove Gauss law in integral form.
(06 Marks)
b. Find the numerical value of Divergence of D at the point indicated if:
(i) $D=20 x y^{2}(z+1) a_{x}+20 x^{2} y(z+1) a_{y}+10 x^{2} y^{2} a_{z} c / m^{2}$ at $P_{A}(0.3,0.4,0.5)$
(ii) $D=4 \rho z \sin \phi a_{\rho}+2 \rho z \cos \phi a_{\phi}+2 \rho^{2} \sin \phi a_{z} c / m^{2}$ at $P_{B}\left(1, \frac{\pi}{2}, 2\right)$
(06 Marks)
c. Given $D=\left(\frac{5 r^{2}}{4} a_{r}\right) c / m^{2}$ in spherical coordinates evaluate both sides of divergence theorem for the volume enclosed between $\mathrm{r}=1 \mathrm{~m}$ and $\mathrm{r}=2 \mathrm{~m}$.
(08 Marks)
4 a. Define scalar electric potential. Derive the expression for potential due to a point charge.
(06 Marks)
b. Find the work done in moving a $5 \mu \mathrm{c}$ point charge from origin to $\mathrm{p}(2,-1,4)$ through the field $E=2 x y z a_{x}+x^{2} z a_{y}+x^{2} y a_{z} V / m$ via the path:
(i) Straight line segments $(0,0,0)$ to $(2,0,0)$ to $(2,-1,0)$ to $(2,-1,4)$
(ii) Straight line $x=-2 y ; z=2 x$
(08 Marks)
c. Given $V=50 x^{2} y z+20 y^{2} v$ in free space,
(i) Find voltage at $\mathrm{P}(1,2,-3)$
(ii) Field strength E at P .
(06 Marks)
5 a. Using Laplace equation derive the expression for capacitance of a co-axial cylindrical capacitor. The boundary conditions are $V=V_{0}$ at $\rho=a$ and $V=0$ at $\rho=b, b>a$. (10 Marks)
b. In spherical coordinates $\mathrm{V}=865 \mathrm{~V}$ at $\mathrm{r}=50 \mathrm{~cm}$ and $\mathrm{E}=748.2 \mathrm{a}_{\mathrm{r}} \mathrm{V} / \mathrm{m}$ at $\mathrm{r}=85 \mathrm{~cm}$. Determine the location of voltage reference if the potential depends only on ' r '.
(10 Marks)

6 a. State and explain Biot-Savart's law.
(05 Marks)
b. Find ' H ' at origin due to an infinite conductor carrying a current of 5 A in a_{y} direction and located at $\mathrm{x}=2$ and $\mathrm{z}=-2$.
(07 Marks)
c. Given $H=\frac{x+2 y}{z^{2}} a_{y}+\frac{2}{z} a_{z} \quad A / m$, find J. Find total current passing through $z=4$; $1 \leq x \leq 2 ; \quad 3 \leq y \leq 5$.
(08 Marks)
7 a. The point charge $\mathrm{Q}=18 \mathrm{nc}$ has a velocity of $5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in the direction $\mathrm{a}_{\mathrm{v}}=0.60 \mathrm{a}_{\mathrm{x}}+0.75 \mathrm{a}_{\mathrm{y}}+0.30 \mathrm{a}_{\mathrm{z}}$. Calculate the magnitude of force exerted on the charge by:
(i) $\mathrm{B}=-3 \mathrm{a}_{\mathrm{x}}+4 \mathrm{a}_{\mathrm{y}}+6 \mathrm{a}_{\mathrm{z}} \mathrm{mT}$
(ii) $E=-3 a_{x}+4 a_{y}+6 a_{z} K V / m$
(06 Marks)
b. Derive the expression for the force on a differential current element moving through a steady magnetic field.
(08 Marks)
c. The field $B=-2 a_{x}+3 a_{y}+4 a_{z} m T$ is present in free space. Find vector force exerted on a straight wire carrying 12 A in a_{AB} direction, given $\mathrm{A}(1,1,1)$ and (i) $\mathrm{B}(2,1,1)$ (ii) $\mathrm{B}(3,5,6)$. (06 Marks)

8 a. Define Magnetization. Given a ferrite material which is operating in a linear mode with $\mathrm{B}=0.05 \mathrm{~T}$ and $\mu_{\mathrm{r}}=50$. Calculate $\chi_{\mathrm{m}}, \mathrm{M}$ and H .
(06 Marks)
b. Derive the boundary conditions for magnetic fields B, H and M for the interface between the different magnetic media.
(07 Marks)
c. Let $\mu_{1}=4 \mu \mathrm{H} / \mathrm{m}$ in region 1 where $\mathrm{z}>0$ while $\mu_{2}=7 \mu \mathrm{H} / \mathrm{m}$ in region 2 where $\mathrm{z}<0$, $K=80 a_{x} A / m$ on the surface $z=0$. If $B_{1}=2 a_{x}-3 a_{y}+a_{z} m T$ in region 1, find B_{2}. (07 Marks)

9 a. An area of $0.65 \mathrm{~m}^{2}$ in $\mathrm{z}=0$ plane is enclosed by a filamentary conductor. Find the induced voltage given $B=0.05 \cos 10^{3} t\left[\frac{a_{y}+a_{z}}{\sqrt{2}}\right] T$.
(06 Marks)
b. What is inconsistency of Ampere's law with continuity equation? How it was modified by Maxwell? Derive the modified equation.
(06 Marks)
c. Given $E=E_{m} \sin (\omega t-\beta z) a_{y} V / m$ in free space, find D, B, H. Sketch E and H at $t=0$.
(08 Marks)
10 a. Prove that the intrinsic impedance of a perfect dielectric $\eta=\frac{|\mathrm{E}|}{|\mathrm{H}|}=\sqrt{\frac{\mu}{\epsilon}}$
(06 Marks)
b. Derive expressions for attenuation constant ' α ' and phase constant ' β ' for any conducting media.
(06 Marks)
c. Calculate attenuation constant, wave velocity and intrinsic impedance in sea water for a uniform plane wave at 10 GHz . The constants are $\mathrm{E}_{\mathrm{r}}=80, \mu_{\mathrm{r}}=1, \sigma=4 \mathrm{Mho} \mathrm{s} / \mathrm{m}$. (08 Marks)

